この記事は、会員限定記事ですので、アクセスすることができません。購読してアカウントをアップグレードすると、本記事に加え、既存の会員専用コンテンツが全て読めるようになります。
料金および本ブログの詳細、団体購読などについては、「本ブログについて」をご覧ください。
コンピュータービジョンで高い性能を上げているビジョン・トランスフォーマー (ViT) ですが、計算量が多いという問題があります。そこで最近、ViT の「視野」の取り方を工夫することにより計算量を削減する手法がいくつか提案されました。また、トランスフォーマーの自己注意機構は本当に必要なのか、トランスフォーマー系モデルを「MetaFormer」として一般化して比較検討した最近の傾向についても少し触れます。
この記事は、会員限定記事ですので、アクセスすることができません。購読してアカウントをアップグレードすると、本記事に加え、既存の会員専用コンテンツが全て読めるようになります。
料金および本ブログの詳細、団体購読などについては、「本ブログについて」をご覧ください。