Free Post 自然言語処理 最新の機械翻訳技術の総集編!Googleが1,000言語を訳せる秘密とは 機械翻訳がまだ対応できない「次の 1,000 言語」を翻訳できるニューラル機械翻訳システムを構築するには?最近 Google から発表された論文では、超多言語モデリングと近年のニューラル機械翻訳の技術を駆使し、グーグル翻訳に低資源言語を追加するプロセスが詳細に解説されています。近年の深層機械翻訳に関する有用なテクニックの総集編としても読め、機械翻訳に関わる人以外にもオススメです。
Free Post 機械学習 機械学習におけるベンチマーク完全ガイド 利用・構築・問題点まとめ 機械学習モデルの性能を測定・比較するための標準化されたタスク・データセットである「ベンチマーク」、機械学習分野で広く普及しており、モデルの開発を後押ししています。本記事では、コンピューター・ビジョン、自然言語処理、音声処理などにおけるベンチマークを最新のものも含めて紹介した後、これらベンチマークの利用・構築に関する示唆に富んだ論文を数本紹介し、「機械学習ベンチマークの利用・構築・問題点」を詳しくまとめました。
Free Post 機械学習 単純かつ効果的!訓練順序を工夫する「カリキュラム学習」とNLP応用 人間が学習するように、難易度に応じてデータを提示する順序を工夫する「カリキュラム学習」、シンプルかつ効果的な方法として研究が進んでいます。本記事では、カリキュラム学習の基礎をおさらいした後、自然言語処理における代表的な応用例 (機械翻訳、音声翻訳、自然言語理解、チャットボット) を幅広く紹介・解説します。
Free Post コンピュータービジョン DALL·E 2 を早くも破る!超リアル画像生成モデル Imagen を解説 5 月末に Google から、テキストに忠実かつ非常に写実的な画像を生成できる Imagen が発表されました。最近発表された DALL·E 2 に続き、テキストをもとに画像を生成する「テキスト→画像 (text-to-image)」タスクが急速に発展しています。本記事では、Imagen に採用されている技術の解説を丁寧に紐解いていきます。
Free Post 自然言語処理 自然言語処理トップ会議 ACL 2022 から厳選!要チェック論文まとめ 先週 (5月22日〜27日)、自然言語処理のトップ会議である ACL 2022 がオンラインおよび対面のハイブリッド形式で開催されました。本記事では、ACL 2022 の論文の中から、現時点での引用数や、幅広い研究や開発に役立つかどうかなど、私の主観なども混ぜながら、要チェック論文を選んで解説しました。
Free Post 機械学習 DeepMind の「万能モデル」 Gato と Flamingo の技術を解説 先週、DeepMind から、単一のモデル・パラメータで、Atari のゲームを制御したり、画像のキャプションを生成したり、テキストで対話をしたり、現実のロボットアームを用いてブロックを積み上げたりできる最新の「超マルチモーダル・マルチタスクモデル Gato」が発表され、ネット上で「汎用人工知能に近づいたか」と話題になりました。また同時に、「GPT-3 の視覚×言語版」とも言える Flamingo も発表され、話題となりました。実際、Gato と Flamingo のどこが凄く、どこに課題があるのでしょうか。論文から技術詳細を解説し、考察してみたいと思います。
Free Post コンピュータービジョン 深層学習トップ会議 ICLR 2022 のベストペーパー・重要論文まとめ【CV編】 先月末に、「深層学習のトップ会議」とも言える ICLR 2022 がオンライン上で開催されました。本記事では、この ICLR 2022 から、特に CNN や分類・生成タスクに関するベストペーパー・要チェック論文を厳選して解説します。特に 1) 理論的な裏付けがしっかりしており、2) 実タスクでの性能が良く、かつ、3) 実装が比較的容易、というものを厳選しました。どの論文も興味深く実用性もあり、今後の深層学習に強いインパクトを与えると予測されます。
Free Post 機械学習 深層学習トップ会議 ICLR 2022 の要注目論文まとめ【NLP/ML一般編】 先月末、「深層学習のトップ会議」とも言える ICLR 2022 がオンライン上で開催されました。本ブログでは、全 1,095 本の採択論文の中から要チェック論文を厳選し、2週間に分けて紹介します。今週は 自然言語処理 (NLP) と機械学習全般に関する論文です。いずれの論文も、新しい概念を提案する挑戦的なものや、実務に使える実用的なものを中心に厳選しました。
Free Post コンピュータービジョン モデルに「分からない」ことを出力させる「分布外検出」の最新動向 機械学習アルゴリズムは、時に自信満々に間違えることがよく指摘されています。モデルに「分からない」ことを出力させる「分布外検出」は実用上重要な技術ですが、近年、研究が大きく進んでおり、最近の ICLR 2022 でもいくつか論文が発表されました。本記事では、分布外検出の代表的な手法と最新の論文を紹介します。
Free Post 機械学習 表形式データに深層学習は「使える」のか 本当に強いモデルはこれだ 実務において幅広く使われている「表形式データ」では、GBDT など決定木アンサンブルに基づく手法が伝統的に非常に強いことが知られています。一方、他ドメインで目覚ましい性能を上げている深層学習ベースのモデルも数多く提案されています。最近になって、表形式データに対する深層学習手法をサーベイ・比較した論文が立て続けに発表されました。現時点で表形式データに一番強いモデルは何なのでしょうか。本記事では、これらのサーベイ・比較論文を紹介しながら、この答えを探ってみます。
Free Post 自然言語処理 ついに出た!Googleによる最強・最大の言語モデル PaLM を解説【論文速報】 Google から、超大規模言語モデル PaLM (「パーム」、Pathways Language Model) が発表されました。パラメータ数 540B (5400億) の本モデル、現段階で「最強・最大の言語モデル」と言っても過言ではなく、言語理解、コーディングタスク、多言語タスクなど、様々な分野で最高性能 (SOTA) を軒並み達成しています。本論文、付録 (appendix) を除いた論文の本体だけで 62 ページもある大作なので読むのも大変なのですが、本記事では、その中でも重要な要点をかいつまんで紹介します。
Free Post コンピュータービジョン OpenAI の超高品質テキスト→画像生成モデル DALL·E 2 の技術詳細を解説 先週、テキストから画像を高い品質で生成できるモデル「DALL·E 2」が OpenAI が発表されました。初代「DALL·E」から一年あまりで、さらにテキストに忠実でリアルな画像生成を実現し、ネットを賑わせました。本記事では、「DALL·E 2」の技術詳細に注目し、論文を理解するための基礎となる技術を順に追って解説しました。
Free Post 機械学習 「とりあえずReLU」で本当に大丈夫?深層学習の活性化関数はこう選べ ニューラルネットワークによって強力な非線形の予測性能を実現するのに必要不可欠な「活性化関数」。tanh や ReLU をはじめ、実に様々なものがこれまで提案されていますが、モデルやタスクに応じてどのように選んだら良いでしょうか。本記事では、最近発表されたサーベイ論文を中心に、「活性化関数をどのように選んだら良いか」をまとめました。
Free Post 機械学習 【じっくり1本】教師なし対照学習が作り出す表現は地球儀を一様に覆う 近年、利用の広がっている強力な学習手法である対照学習。その性能の秘訣を「アラインメント」と「一様性」の観点から解き明かした本論文、じっくり一本解説しました。論文の可視化の文書化の技術は一見の価値ありです。
Free Post 自然言語処理 NLPでトランスフォーマーを超えた!? 多層パーセプトロン研究の最前線 昨年から活発に研究されている多層パーセプトロン (MLP) モデル。自然言語処理 (NLP) の分野ではあまり性能が振るいませんでしたが、最近になって、NLP タスクでも「トランスフォーマー超え」を達成するモデルが立て続けに発表されています。本記事では、最近発表された期待の MLP モデル、HyperMixer と sMLP を解説します。