この記事は、会員限定記事ですので、アクセスすることができません。購読してアカウントをアップグレードすると、本記事に加え、既存の会員専用コンテンツが全て読めるようになります。
料金および本ブログの詳細、団体購読などについては、「本ブログについて」をご覧ください。
現実世界のデータでは、カテゴリ間のデータ数に偏りのある「不均衡データ」や「ロングテール分布」が頻繁に出現します。このようなデータに対して対策せずに学習すると、希少カテゴリに対して精度が低下したり、モデルが自信過剰になったりする問題が発生します。本記事では、分類や物体検知のデータセットにおいて、カテゴリごとのデータ数に偏りがあるロングテール (long tailed) 分布をもつデータセットの問題とその対応策を、最新の論文から代表的な手法を選び解説します。
この記事は、会員限定記事ですので、アクセスすることができません。購読してアカウントをアップグレードすると、本記事に加え、既存の会員専用コンテンツが全て読めるようになります。
料金および本ブログの詳細、団体購読などについては、「本ブログについて」をご覧ください。