この記事は、会員限定記事ですので、アクセスすることができません。購読してアカウントをアップグレードすると、本記事に加え、既存の会員専用コンテンツが全て読めるようになります。
料金および本ブログの詳細、団体購読などについては、「本ブログについて」をご覧ください。
ニューラルネットワークによって強力な非線形の予測性能を実現するのに必要不可欠な「活性化関数」。tanh や ReLU をはじめ、実に様々なものがこれまで提案されていますが、モデルやタスクに応じてどのように選んだら良いでしょうか。本記事では、最近発表されたサーベイ論文を中心に、「活性化関数をどのように選んだら良いか」をまとめました。
この記事は、会員限定記事ですので、アクセスすることができません。購読してアカウントをアップグレードすると、本記事に加え、既存の会員専用コンテンツが全て読めるようになります。
料金および本ブログの詳細、団体購読などについては、「本ブログについて」をご覧ください。